Smarty and the Nasty Gluttons
For this tutorial/monolog you would need:

e My original copy of the game preview ;)

e Areal Amiga hardware with at least 1MB chip and one or more floppy drives

e RossiMon

e AsmOnel.02+or 1.02

e Adecent cruncher

¢ An empty OFS formatted disk

e FS-UAE to make nice screen captures, which also explains some inconsistency with the disk drive
numbering ;)

Just a quick note to readers. My A600 has Kickstart 3.1 and 2MB CHIP RAM. All the work was done on it
using the above mentioned tools. The screen captures were then done using FS-UAE with A500 with
1MB CHIP RAM and 1MB FAST setup just to test the final release under kickstart 1.3 and make nice
screen captures.

As a background, a long ago | worked on a game called Smarty and the Nasty Gluttons ;) My
contribution was the boot up procedures, disk system, compression and a disk duplication system (i.e.
use stock Amiga to copy the master disk simultaneously up to four drives). The game got never released
due unfortunate events. With the permission of the current owner of the rights (many thanks Eero!) |
attempt to crack a playable game preview that | found from a box of old disks that used to belong to one
of the game lead developers and make a nice release out of it. Having written the disk system gives me
an upper hand but it was over 20 years ago and | actually never had a playable game previews before. |
did not have to since the toolset given to developers was made to be fully usable without my
intervention.

The cracking method used in this tutorial is going to be very low tech and oldskool — since that’s where |
am stuck at. My method has no room for ActionReplay or UAE but loads of resets and handwritten notes
on a paper. Let’s start Timo Rossi’'s Amiga Monitor (ahh, such a great tool.. and r.i.p Timo) and insert the
game disk into DFO:. As expected we get nasty “read-write error” noises and eventually a read error,
which indicates us the disk has some kind of a non-DOS format. In order the game to boot at least the
track 0 on the lower side, which also contains the boot block, has to be in OFS or FFS format. I'd assume
the disk has OFS format but it is not important since the final crack will be in OFS formatted disk in any
case. First, | read the entire track 0 into CHIP memory address $S80000 and write it back to another disk |
have as a DOS file. Next we’ll have a look at what there might be on the boot block. The code seems to
allocate one track worth of CHIP RAM and load the entire track 0 into RAM and then jump to the
allocated memory address + $54. This is rather normal stuff.

DOS | (||
--- Aniga Monitor ---
Copyright 1987-1993 by Tino Rossi, version 1.39

-> (BPAAA 1 A b

9632 hﬂtes read fron $08086088 to $B88815FF

-} 18AHAA 168@ bh.bin

-} dénRac

ARREAAAC 48ET AAd2 noven.l al/ab,-(sp)

AAAGAR1IA 716 noveq §#516 a8

AAAGARLZ2 E148 Isl,u 48 db

AAAGARIA 7282 noveq #02 a1

AAAGARLG 2488 hove.1 d@ db

AARGAR1E 4EAE FF3A Jsb —4b6(a6)

AAAGARIC 2448 novea,l df, a2

AARGARIE 288A nove,l a2, df

AAABARZA GEAB bne.s SBEAB2A

ARRgAA22 4CIF 4288 noven, | (s§)+,alfaﬁ

AAAGARZE TRFF noveg #-581,de

AAABARZE 4ETS pts

ARAEAAZA 2237 novea,l (sp),al

AAABARZC 97CB suba.l a3, a

AAABARZE 337C ARAZ ARIC MOVE, | #EGBBE,EIC(aIJ

AAABAR3L 48E9 ACAL AR24 hoven,] d2/a2-ald,$24{al)

AAABAR3IA 4EAE FE3B Jsp —$108(a6)

AAASARIE 4EEA AR54 Hp 5ad(a2)

AAAGARLZ 6772 eq.s 5ABARBG

AAAgAR4L 6178 bsn.s 5HBABBG

¥#6%Bne

J A o

There seems to be an interesting code snippet starting at $80062. The code scans through the ExecBase
MemlList (i.e. ExecBase + $142, type = NT_MEMORY) and searches for the largest memory area that is
not in the first 512K of CHIP RAM. So any FAST RAM or CHIP RAM beyond $80000 works as an available
memory. The game requires at least 1M of RAM, otherwise it refuses to run (Ed: | took the memory
check code and tried to use it as-is. It appears to bug in some cases with some 512K CHIP RAM only
systems so | had to modify the code a bit for the crack to work properly — everything will crash’n’burn if
there is only 256K of CHIP RAM btw). The code continues to turn off the system, take over the display
and poke known AGA registers to make everything OCS compatible. The code starting at $800cc jumps
to SuperVisor and then checks for the CPU type. If anything better than 68000 is found the VBR is set to
S0. All these steps are probably unnecessary at this point of the system boot but just to be sure | guess.
If the start of additional memory is zero the boot block code jumps to address $80168, where a small
piece of code will decrunch (vanilla StoneCracker S404) some nice graphics and display a screen saying
that at least 1IMB is needed. At $80106 the additional memory and its size get stored into memory
addresses $8c and $90. We need to remember those since the game itself uses these addresses to find
memory areas where, for example, to load data. Both USP and SSP stacks are moved to the top of the
found additional RAM. For both stacks $400 bytes are reserved.

The code at address $8011a moves the disk loader to address $c0 (we will study the loader code later in
detail). The entire loader is PC-relative, which will be very useful for us later on when we start extracting
files from the disk. The code at $80134 stores another two values into memory locations $84 and $88.
These are important since later we will find out that address $84 holds the address of the disk loader
(here Sc0) and address $88 holds the first available “free memory” address after the loader. Before

o

o O

o O

jumping into the loader for the first time (at $80146) registers A0, Al and A2 get loaded with interesting
values. Register AO contains the address of the MFM buffer, Al contains an address of a buffer for a
single decoded track, and A2 contains the address of the file table. It turns out that the beginning of the
loader contains a jump table and the first entry of it has to be called in order to initialize the loader.

After initializing the loader the code between $80148 and $8015a loads the file table from the disk. The
size of the file table is $Sa8 bytes but not all entries contain valid information. | used a typical method of
mine to dump the file table: modified the boot loader code to load the file table into some available
higher CHIP RAM location, rebooted the machine and the copied the table from memory using
RossiMon. No fancy thrills or maneuvers. There are 15 files in the file table instead of possible 21. The
file table is used extensively by the loader and the game. After loading the file table, the code between
$80154 and $80168 loads the first game code into memory starting at $50000. Note that the register DO
gets set to 0, which for the disk loader means to load the first file from the file table. So far we have
learned the following from the loader (assuming when it is located at $c0):

Calling ScO initializes the loader:

AO=MFM buffer address, Al=buffer address for one track, A2=address of file table
Calling Sc4 loads data from disk:

DO=drive number, D1=number of bytes to load

Al=destination memory address, A2=byte address on the disk(!)

Calling $c8 loads data from disk using file table:

DO=index to the file table

Al=destination memory address

A DOS | (||
AAABA164 4EER ARAC Jnp SBC(a3)

-} difila

AAABA11A 41F8 AACA lea 5C0, a8
ARRER1IE 2648 novea.l af,ald

AAABA12A 43FA ACD4 lea EBEBDFG(Ec),al
AAABA124 3M3C A3BB nove.w #5388, d
ARAEA128 3ADY nove,w (al)+,(al)+
AAABA12A S1CE FFFC dbf dB,EBﬁBIEE
ARRER1ZE 2448 novea.l af, a2

AAABA13A 49EA ARAR lea 5Aﬁ(a£),a4
AAABA134 41F9 AAATB4GH lea 5A7R468, 2B
AARBA13A 43F9 AAATETGA lea SHTETRA, al
AAABA14A 48FE 18AA ARB4 hoven, 1 a3-a4,5ﬁ4
AAABA146 4E93 Jsb a3l

AAABA148 7RAA noveq #4588, dA
ARABA14A 224A novea,l az,a

AARBA14C 223C AAARARAS nove.l WSBARBAS, A1
AAABA152 347C 18AM hovea.w #51BA8 ab
AAABA156 4EAR ARAS Jsb ¢3B(a3)
AARBA15A 2ERC AAASAAAA nove,l #5B5B0AA, (sp)
ARREA1GA 2237 novea.l (sp),al
AAABAL1G2 7RAA noveq #5H8,40
AAABA164 4EER ARAC fnm SBC(a3)
AAABAL16E 41FA ARFC ea £ABAZ6eb{pc),
AARBA1AC 2A3C AAASARDL nove,l #5A50A6D4, dA
AAABALT2 TAR3 noveq #%583,d5
AAABA174 3148 ARA4 MOVE, | dﬂ,$ﬁ4(aﬂ)
AAABA1TE 4848 sHap (il

AAABA1T7A 3AEA nove.w d@,{ad)

- } E

Before we dwell into the game code, let’s have a look at the loader. There might be something
interesting in it ;) The loader was moved to address $cO but we can examine it where it is located now
i.e. at $80df6.

The loader starts with a jump table. The routine at $80df6 i.e. $c0 when the game is running, calls the
loader initialization routine at $80e0e. The initialization routine sets up both MFM and track buffer
pointers as well as the file table location.

The routine at $80dfa i.e. Sc4 when the game is running, jumps to $80e4c. This routine loads a
requested amount of data (size has to be modulo of 4) directly from disk (any of four drives). The disk is
byte accessed (address has to be modulo of 4 it seems) meaning there is no concept of tracks or sectors
from the caller point of view. We will have a closer look at this specific loader routine later on as it
seems to be more than just a plain track loader.

The routine at $80dfe i.e. Sc8 when the game is running, jumps to $8111e. This loader loads, again, a
requested amount of data (size has to be modulo of 4) directly from disk (any of four drives). The disk is
byte accessed (address has to be modulo of 4 it seems). Loader routines at $c4 and $c8 are somewhat
different, although they share many common subroutines.

The routine at $80e02 i.e. Scc when the game is running, jumps to $80e22, which is the routine to load
data/files using a file table. The file table based loader hardcodes the drive to DFO:, which is somewhat
odd.

Finally, the routing at $80e0a i.e. Sd4 when game is running, jumps to $813cc and this routine is able to
save one track at a time to a disk. Obviously it is meant for saving hi-scores or such.

mC

Let’s look at the loader routine located at $80e4c. The routine at $80f2e selects the drive, turns on the
motor and initializes most of the disk controller registers. There are a couple of immediate observations
to make. The disk SYNC word is passed in D5 and we can see that it is set to a custom value $2909. The
code between $80e7c and $80e86 looks like calculating the track on a disk, and based on the division
value $18a0 we can assume the track data length is $18a0 i.e. 6304 bytes. The call to $80fe2, which
seeks to a correct track, and later the call to $8110a to start the disk DMA confirms our assumption. So,
we are dealing with a custom disk format with long tracks. Cracking this game just became much more
interesting ;)

The track decoding code starts around address $80ea6. The actual MFM decoder is located at $810aa.

The track format is rather straight forward. A track has no sectors or well, one sector. The track has four
custom SYNC words followed by a track data checksum and then the track data itself.

DO !

AABBAESE 4ETY
d8fed

= pde

AARBAE4C 48E7 TITE
AABBAESA 4DF9 AADFFAZ4
ARBBAESE 4BF9 BABFD188
ARRBAESC 49ED AFAl
AARBAEGA 47TA B666
AARBAERE JA3C 2989
AARBAEGE 41FA B384
AARBAEGC 2748 AOZE
AABBAETA 3680

AABBAET2 177C B@B4 AARd
AABBAETE 61AA AAB4
AABBAETC 208A

AARBAETE GAFC 18AB
ARBEGAEE2 2880

ARBEBAERA 4844

ARBEBAERE 6188 B15A
AABEBAEEA 1680

AARBAESC 66AA AABE
ARBBAEYR 2E3C 59333933
AABBAESL 6188 B1E4

AABBAEYA 6188 B26E
AABBAESE 6188 AIEA

ris

noven,l di-d7/aB-ak,-(sp)
lea SDFFR24, ak

lea FD188, a3

lea SFO1i(as),ad

lea 53814C8(§c),33
#2009, d

lea $BB11EE(pe), a0

hove, | aﬂ,EEE;a)|

a3
nove, b #564,584(a)
¢H8af2E

a2, de
dive~ #sigAe,de
da, a4

AF16
nmove,l #535953993,d7
hsh SBB1ATC
hsh SHB11RA
bsn 5B818BA
nove.b df,{a3)

ARBBAEAZ 1680

AABBAEAL 6670 bne.s 588616

ARBBAEAG BASS chp. (aB)+,dd

AABBAEAR G6BA bne.s $88AER4

BgBEBEAA BASS chp.w (aB)+,dd It

A note about the code between addresses $80e68 and $80e70. The address $811ee happens to be the
start address of a special StoneCracker S404 decruncher routine. The loader code seems to “reset” the

decruncher to a known state each time a new data/file gets loaded from the disk. Now this is even more
interesting. We are not going to look into the decruncher in this tutorial but what it does is to decrunch
one track worth of data into memory. The decruncher is able to exit itself anytime when it runs out of
data to decrunch saving the exact location where to resume execution next time. Those who are familiar
with Amiga’s executable decrunchers should now immediately say: “ahahhaaa.. doesn’t this look and
taste like Titanics cruncher?!” Now having two buffers in the loader starts to make sense. There is one
buffer for MFM data and one buffer for track holding data to be decrunched!

The code starting at $80ec4 has to do with loading more data after the first read track. If there is more
data (or tracks so to speak) to read from the disk, the call to $810fc advances the drive head to the next
track and start the disk DMA. Without waiting for the disk DMA to finish the loader calls a routine at
$813b6, which decrunches the *previously* decoded track into destination memory. A neat idea to use
the time usually wasted just for polling the disk DMA to finish for something useful like decrunhing. So
this loader is able to decrunch S404 crunched files from disk while loading. It also turns out that the file
table based loader at $80e02 knows the difference between a normal and a crunched file, and based on
that calls either the loader at $80dfa (crunched files) or $80dfe (plain data files). In the file table
crunched files have a negative length. Based on what we have now we can estimate that the custom
disk format is able to store 1002336 bytes of raw data to the disk and assuming all files were crunched
the disk capacity is more than 1500000 bytes (>1.5M). This is of course subject to compression ratio of
individual files but not bad at all..

A DOS ! | (||
AABBAEAA BASE chp. v (aB)+,d3
-} d8fecd
AAABAECA 3A7C 18AM novea,w #518A8, a8
AAABAECE 9AC4 cuba, v d4,a8
AAABAECA 9288 cub, 1 af,dl
ARABAECC GFA4 hle.s EBGBEDE
AAABAECE G1AA A22C hsnp SHE18FC
AAABAEDZ 48E7 7TFRE noven,l di-d7/aB/ad-a6,-(sp)
AAABAEDE G1AA A4DE hsnp tH813B6
AAABAEDA 4CDF 7IFE noven,l (spl+,d1-d7/a87ad-a6
AAABAEDE 1688 nove. b d#,{ad)
AAABAEER 6634 hne.s EBGBFIG
AAABAEE? 177C AAA4 AAA4 nove. b #5084, 584(a3)
AAABAEER GA2A bra,s EBEBPBA
AAABAEEA AC2E AAA1 AAA4 chpi.b #581,564(a3)
AAABAEFA GGAC hne.s EBEBﬁFE
AAABAEF2 SAER AAAZ ct tR2(ad)
AAABAEFG 1A2E AAA3 nove.b 583(a3),de
AAABAETA G1AA AAEG hsp SHERFEZ
AAABAEFE 5328 AAA4 subq. b #1,564(a3)
AAABAFAZ GAJG bpl.s EBGBEBA
AAABAFA4 16BC AAAS nove. b #583,(ad)
AAABAFAR 72FF hove #-Eﬂi il
AAABAFAA 177C AAA4 AAA4 hove, #534,§B4(33)
AAABAF1A 78AA nuue? #5608,
AAABAF1Z 4AB1 tst, il It
AAABAF14 GERR bgt.c 5HEBESE
AAABAF1G G1AA Aled hsnp SHE1RTC
BgBEBFlA 1828 888l nove.b 581(a3),de
H

Anyway, let’s leave the loader for a while and extract files from the disk. We have two ways to do that.

IH

First, just dump the entire disk using the “normal” loader and then extract individual files from the
binary file dump. Second, use the file table based loader to load each file individually and save them. We
will use the latter because it turns out that the crunched files on the disk are preprocessed and not
decrunchable with a normal StoneCracker decruncher routine. Because | am lazy we'll let the disk loader
to decrunch those files for us. Actually | did both methods because it was easier in that way to find the
decrunched lengths of the crunched files from the disk dump. The file table does not have this original
file length information — just the size of the files on the disk. We also need to extract those files that are
loaded from the boot block and therefore not listed in the file table i.e. the file table itself. The following
simple assembly program (ripper.asm — you can find it in the cracked game disk under “stuff” directory)
does the thing. We just need to load each file one by one and save them to the disk. | am not showing

|”

the parts of the code that save and restore the system. If we take a peek into “normal” files they appear
also be crunched with a normal StoneCracker and have a decruncher code attached to them. For now |
assume these are program files that are cached in RAM and decrunched & run on need to basis. We'll

see later if the assumption was correct.

After extracting all 15 files they sum up to 1104756 bytes, which will definitely *not* fit into our OFS
formatted disk. The files have to be recrunched but that is for a later phase. Next we will look into the
first loaded game code and what it keeps in. This is the “file 0” in the file table. As we noted earlier the
first game code gets loaded into address $50000. The code at $50000 looks (boringly) normal. It does
load files 1,2,3,4,5,6,7 and 8 into the memory. The file 1 gets loaded into $20f00, which seems to be
next game code to execute. The file 5 gets loaded into $900 and the rest of the files into the additional
RAM that we located during the boot. Later in the game more files are loaded when the player has
completed the first set of game levels. Anyway, the code looks straight forward in a sense that it always
uses the disk loader routines whose entry address is located in address $84 (i.e. where boot block stored
the address of the loader). I'll take the risk and do not even try to modify the game code but just replace
the track loader with a DOS file loader and hope the game always uses the same interface to access the
disk. There is no sign of saving hi-scores or using any other loader functions than the file table method.
Also, there seem to be no protection what so ever (well.. | did not look too hard for them after all).

DO !

(s

AQR5ABAA 4DF9 RADFFAG2
AgBaAeAG 3DTC TFFT 8094
AQBaABAC 3DTC TFTT 8898
ARR5AB12 61AA BFB4
ARB5AB16 2DTC AABS1112 ABTE
ARRSABIE SOEE B8B6
AQR5ABZ2 ZIFC AABOALIC BBGC
AQB5AB2ZA 3DTC 83CA AA%4
AQB5AB3A 3DTC CA2A AA9E
ARRSAB36 2078 ABB4
ARRSAB3A 7881

AARSABIC 227 BAAZAFAR
ARR5AR42 4EAG BABC
ARRSAB4L 4ARM

ARR5AB4E 6708

AQB5AB4A JDGE BBB4 B1TE
ARB5ABSA 6ATE

ARRSARS2 2078 B8R4
ARBSABaEL 7082

ARR5ABSE 2278 AABC
ARR5ABSC 4EAG BABC
ARBSABGA 4ARN

ARB5ABG2 GEEG

ARRSABGd 2078 ABB4
ARBSABGE 7083

ARRSABGA 2278 BABC
BgBEBBGE D3FC B8B25F32

lea
nove,
nove,
bsn
nove,
ot
nove,
nove,
nove,
novea, |
Hoveq
novea.

%sr
ct.b
beq.s
MOVE, |
bra.s
novea, |
Hoveq
novea.

fst.b

128612 bytes pead fron 580050088 to 508BED723
=} dﬁﬂﬂﬂﬂ

SDFFBOZ, 26
#STFTF, 4040 a6)
#s7rrréssa(as)

SA5AFC
4051112, $7E(a6)
¢86(26)

#£A5015C , $6C
#2030, £04(36)
#5020, 598(a6)
saq aB

sazéraa al
AC(a8)

Now that | got all files extracted and a good idea how the game code works | can move to the next part

i.e., putting everything together. Those means taking one of my old hardware banging DOS file loaders

and make it behave just like the game code expects the track loader to work. | also add a proper startup

code that zeroes VBR, takes care of caches and makes the video mode OCS. The “new” loader also

includes a fixed memory check so that the game will complain and refuse to run if there is less than 1MB

or RAM available. | took the graphics for the “1MB Needed” from the original boot block and

decrunched it (the graphics was S404 crunched). Since the original game track loader had plenty of work
space (one MFM buffer and one decoded track buffer) at the end of 512K CHIP RAM the new loader can
use those as well for its MFM buffer, sector buffer and decruncher work space (yes, StoneCracker v5

needs SA20 bytes of work space). You can find the “new loader” dosload.S in the cracked game disk

under the “stuff” directory.

I'll use StoneCracker v5 to crunch all files that were crunched “Titanics style” on the original game disk. |
do not recrunch normal S404 crunched files — since | am just too lazy for that. Unfortunately I'll lose the
neat decrunch-while-loading feature and crunched files are now loaded entirely first and then
decrunched. It would be too much trouble to recreate the “Titanics style” loader for this crack. Once all
DOS files have been written to an OFS formatted floppy | still got like 20% free, so plenty of space for
intro and the new loader program. The last thing to add is the dumbest possible Startup-Sequence to
load the “new loader” program and we are ready to try the cracked game.

The intro starts and music plays. Great! However, when the actual game is about to start we are greeted
with the infamous Guru-Meditation. Now, what is the problem?

All files worked just fine when tried individually (yes, | tested them all). To cut the furious +30 minutes
debug session short with multiple reboots on my A600 | managed to narrow the issue to a rather
unpleasant discovery. StoneCracker v5 decruncher overwrites the decrunched memory area by two
bytes when the source and the destination memory areas overlap entirely (you cruncher lovers know
what situation | am talking about). Sigh! Those overwritten bytes just happen to be the start of code
located at $20f00. You remember that the game loads one file to $20f00 and another to $900, and in
that order. The latter decrunched file is supposed to end at $20eff but.. | am not in a mood of fixing the
decruncher so there has to be another way to go around the issue. | could write the overwritten bytes
back to memory after decrunching or load crunched files to some other memory area to avoid overlap
situation or reverse the file loading order. | go for the last option and do small editing/assembling using
RossiMon. | was really short of RAM to avoid the overlap situation and therefore chose reversing the file
loading order.

DO !

AAASAR3A 3DTC CA2A AA9B
AAASARIG 2078 ARB4
AAASAR3A 7881

BARSAR3C 227C AAAZAFAA
AAASAR42 4EAR ARBC
ARASAR4G 4ARA

AAASAR4E 6788

AAASAR4A 3DGE ARAL A1TE
AAA3ARSA GAFS

AAASARSZ 2078 AAB4
ARA3ARGG 7RA2

AAASARGE 2278 AREC
AAASARSC 4EAR ARAC
AAASARGA 4ARA

ARA3ARG2 GEER

AAASARGL 2A78 ARB4
AAASARGE 7R3

AAASARGA 2278 AREC
AAR3ARGE D3IFC AAAZSF 32
-} aaBB3a

AAASAR3A 7RAS

AARSAB3C 43FE AI8A
AgeaAB4A 4E71

AEA 7861
ARASAREC 43F9 BARZEFER
ARGSAAF: ! _ :
-} 168860 14724 dF1:filedt.bin

nove.uw #5CH28,598(a6)

novea,l 584,a

noveq ol de

novea,] #5026F88, al
C{al)

fst.b

beq.s J8R52

nove.u SB4(ab),517E(ahk)
bra.s $H5004A

novea,l 584, a8

noveq #Eﬂé,dﬂ

novea.l $8C,al

Jat)

st.b d@

bne.s $H5004A
novea,l 584, a8
noveq #Eﬂé,dﬂ
novea,l $8C,al
adda.] #5885F32, al

noveq #585,d8
lea 5988, al
nop

g =Lt
o O R

noveg #581,d8
lea 5B2aF80,al

After modifying the game code at $5003a and $500ea | write the file back to a disk. | need to change the

new loader as well to match the new file name. After assembling the new loader some crunching takes

again place. Unfortunately | need to use Windows for this due my laziness. | still got no Amiga binary for

StoneCracker v5. On the other hand crunching these files is blazing fast on my Dell laptop compared to

anything on my 68000 A600 ;-)

stcs/ § ./stcS5.exe

Show help
Handle file as raw data

es

6% - total 4520 bytes

: . /stc5 [-<options=] infile outfile

StoneCracker v5 - (c) 1994-2014 Jouni 'Mr.Spiv' Korhonen

select algorithm (0=5405 absolute/data), default=0

Load address in hex for the decompressed data

Execute start address in hex for the compre ata

Location in hes for the work area (0xA20 by

select decrompression effect (none=0, color), default=1
./stc5.exe —-d fil bin fileO+.s5405

StoneCracker v5 - (c) 1994-2014 Jouni 'Mr.Spiv’ Korhonen

5
0000 -w 7000 smarty smarty.exe

stoneCracker v5 - (c) 1994-2014 Jouni 'Mr.Spiv’ Korhonen

B

Let’s try again.. everything seems to work just fine and the game main screen appears after a while. We
nailed it. However, as a side effect changing the order of loaded files the intro sequence during the

loading is not a bit out of sync. Sorry.

The start screen:

First levels:

#ixlo SRt ooooo

wm®a
a - L
s

wil
.""
1—I

W wie vie vis die v G i

'1-"1u"1-"""".-"-I"'iu':;_;lu"1-"""".-'1-"1u"-I"'iu'1-"1u"1-"""".-"-I"'iu'1-"1u'f!u'f!iﬁ’iif‘*ff‘*fﬁ’iu‘f!

wETay

First bonus level:

#ox10 SceRZ 00000

Second levels:
#5208 SteRi ooooo
) *
X L
r
% I
VAFE: |

¥*

As a summary the only modifications we did to the game were:

Replaced the boot block based loader with a normal boot block.

Extracted the game files from the custom formatted disk and saved them as normal DOS files.
Replaced the custom format track loader with a DOS file loader.

And the single modification to actual game code swapping the order of loading files 1 and 5.

Obviously the implementation of the “new loader” took a while, especially as it was entirely done on my
A600. Swapping files between A600 and Windows UAE for making screen captures is somewhat tedious.

Regarding the game it has two sets of playable levels (and bonus levels). You can fool around and shoot
those Nasty Gluttons as much as you want. However, you cannot complete the game or even a single
level. To move from level to another, press the left mouse button. Once you have gone through all levels
you will be greeted that the dream is over and a reboot will follow.

Now that the game works, | can concentrate on adding the crack intro (ahem.. or the Startup-Sequence
text) and stuff to the release version of the game preview you have. All additional material helping to
check what was done to crack this game preview is in the cracked game disk under the “stuff” directory.
The fully commented game disk bootblock disassembly is also there.

The DOS file loader crack approach was inspired by World of Wonder’s Dugger crack by Eurosoft. Not to
mention that crack has the best Amiga crack intro ever! Kudos to Quartex for ultimate Startup-Sequence
style cracks that was blatantly copied here. It is all for fun & nostalgia you know ;-)

The last minute bootblock intro had to be added — a true coder “beauty” after few tiring hours of “how
did I do that again.. grumbles..”. The sources are also on the crack disk under the “stuff” directory as
bootblock.asm.

The infamous Quartex style crack..

RurigaD0s | e[|

#* Smarty and the Nasty Gluttons - wip version game preview *

¥} Chacked to DOS files in 2815 by Mp.Spiv of Scoopex ¢

Greetings fly to: Python (thanks for the original Eero),
Photon, Galahad, Stingray, ne?, and the rest of Scoopex,
Musashi 9, WayneKerpr, and the rest of Flashtbo regulanst

Released fobr flashtro,con

Crack insipired by WoW and Quartex ;-)

Press left mouse button to continue,,

MOVEQ #0,D0
RTS

